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instability in the tail behaviour returns of stock market indices, based on some 
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modifi ed Hill estimator for the tail index. We provide simulations that indicate good 
fi nite sample properties of our procedure. The proposed method is then applied to 
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attack, sub-prime crisis in 2008 and European Union (EU) debt crisis triggered 
on 2010.

Keywords: multiple structural change; extreme value analysis; tail-index; 
modifi ed-hill estimator, break dates.

Reference to this paper should be made as follows: Raggad, B. and Boutahar, M. 
(2012) ‘Structural change in tail behaviour and the recent fi nancial crises’, Int. J. 
Monetary Economics and Finance, Vol. 5, No. 3, pp.277–298.

Biographical notes: Raggad Bechir is an Assistant-Professor of Quantitative 
Methods at Carthage University-Tunisia. He received his PhD in Applied 
Mathematics and Econometrics from the University of Aix-Marseille II–France. 
He teaches Statistics, Applied Econometrics, Time Series Analysis, Quantitative 
risk Management. Raggad’s research has focused on Extreme Value Theory, Value 
at Risk Methodology, Financial Risk Management. His publications appeared in 
Energy Economics and in Mathematical and Social sciences.



278 B. Raggad and M. Boutahar

Boutahar Mohamed is a Professor of Applied Mathematics in Aix Marseille 
University. He teaches Statistics, Time-series analysis, Financial Econometrics.
Boutahar’s research has focused on Regime Switching models, Long memory 
process, non-linearity and non stationarity, spectral analysis, Economic statistics. 
His recent publications appeared in the Journal of Forecasting, The Journal of 
Time Series Analysis, The Journal of Applied Statistics, in Statistical Methods and 
Applications.

1 Introduction

Recent fi nancial disasters and crises have strengthened academic attention to the extremal 
behaviour of fi nancial market returns in turbulent periods, where monitoring fi nancial risk 
has become a paramount importance for fi nancial institutions as well as capital market 
regulators. Firms perform risk management to guard against the risk of loss due to the fall 
in prices of fi nancial assets held or issued by the company. What are of importance here 
are the magnitudes of the changes in prices, rather than the average variations. Financial 
risk management typically deals with such low probability events in the tails of asset return 
distributions. The further out in the tails we go, the smaller the probability of an event 
becomes at the same time as its consequences will be larger. In order to model such events 
Extreme Value Theory (EVT) and especially heavy tailed distributions play a crucial role. 
By heavy tailed distributions, we mean the distribution that have a higher density than that 
what is predicted under the assumption of normality. For example, a distribution that has 
an exponential decay (as in the normal) or a fi nite endpoint is considered thin tailed, while 
a power decay of the density function in the tails is considered a fat tailed distribution. 
Examples of such distribution are frequently encountered in many fi elds, especially in 
fi nance and economics (Mandelbrot, 1963; Fama, 1965; Jansen and de Vries, 1991; McNeil, 
1998; Embrechts et al., 1999; Gençay and Selçuk, 2004; Huang and Lin, 2004; So and Yu, 
2006; Ané, 2006; Cheong, 2008; Marimoutou et al., 2009).

Recent developments in Extreme Value Theory (EVT) enable such fat-tailed data 
to be analyzed without explicit assumptions having to be made about the distribution of 
returns. A tail index can be used to measure the fatness of the tails. This way of treatment 
is originated from the assumption that the tails follow power-like distribution or regularly 
varying distribution (Embrechts et al., 1997). The rate of decay is thus represented by tail 
index, which is the inverse of shape parameter. That is, the tail behaviour is governed by tail 
index. A variety of procedures to estimate are now available in the literature (see Hill, 1975; 
Pickands, 1975; de Haan and Resnick, 1980; Hall, 1982; Mason, 1982; Davis and Resnick, 
1984; Csoérgo, et al., 1985, Hall and Welsh, 1985), although there are still open problems. 
Quite often the accuracy of these estimators relies heavily on the choice of some threshold, 
but it is not our aim here to address this type of optimality questions.

The tail index is a necessary ingredient and once the tail index is known it can be used by 
risk managers or fi nancial regulators to calculate extreme quantiles (like Value at Risk) for 
very low corresponding signifi cance levels. In this paper, we concentrate on the best known 
estimator, Hill’s estimator, which is commonly accepted and practiced as a successful tool. 
Numerous empirical studies subsequently focused on identifying the degree of probability 
mass in the tail by estimating the so called tail index. However, much less attention has been 
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paid to the possibility and consequences of a non-constant tail index. What is important 
in analyse of tail behaviour, especially interesting during periods of market turbulence, is 
whether the tail shape of the distribution itself changes, thereby increasing (or decreasing) the 
probability of outliers. From a risk management point of view, it is crucial for risk manager 
to know whether the tail shape of fi nancial returns distribution exhibits multiple structural 
changes, namely, whether the probability of extreme events varies among different regimes. 
In fact, if the amount of probability mass in the tails of the unconditional distribution is 
shifting through time, the full sample estimates of tail index and corresponding quantiles 
might wrongly estimated.

With reference to the existing literatures, only a few empirical studies that have paid 
attention to the issue of whether the tail index is constant over time. Among the few pioneers 
studies, are the works of Phillips and Loretan (1990), Koedijk et al. (1990), Jansen and de 
Vries (1991) or Pagan and Schwert (1990). These empirical literatures on the constancy 
issue mainly focus on testing for a single known (and thus exogenously selected) breakpoint 
in α and provide only weak evidence for structural change in tail behaviour.

Recently, some works that focus on the subject have been emerged. Examples include 
Quintos et al. (2001), Werner and Upper (2004) and Candelon and Straetmans (2006). 
Quintos et al. (2001) proposed tests statistics that allow for the identifi cation of single but 
unknown (endogenously determined) breakpoints in α. They applied a recursive, rolling and 
sequential test statistic to the tails of three emerging stock markets and were able to detect 
structural breaks indeed. Moreover, the detected breakpoints were found to be ‘meaningful’ 
in the sense that they coincided with periods of fi nancial turmoil or regulatory change. Upon 
comparing the three procedures in terms of small sample power and estimation accuracy for 
the structural break date, they found that the recursive procedure performs best. Applying the 
recursive test of Quintos et al. (2001), Werner and Upper (2004) also demonstrated that the 
tail-index of Bund futures returns distribution exhibits structural break points. Furthermore, 
Candelon and Straetmans (2006) considered issues related to multiple structural changes 
occurring on unknown break dates. These authors applied the single break point recursive 
test devised by Quintos et al. (2001) in a sequential way, enabling the detection of gradual 
increases and decreases in tail-index, to test for multiple break points. Additionally, they 
showed the existence of multiple structural break points in the tail behaviour of emerging 
currency returns.

More recently, Lin and Kao (2008) proposed another empirical approach, built upon the 
work of Bai and Perron (1998) which specifi es a time series of tail-indexes in a linear model 
with a multiple structural change framework, for detecting multiple structural changes of tail 
behaviour of the daily returns data for DJIA futures contracts. 

In this paper we go one step further than the Lin and Kao (2008) analysis in that we 
propose a testing procedure for multiple breaks and apply it to American and French 
stock indexes data. Obviously, the numerous switches, fi nancial and economic crisis 
over the recent history make fi nancial market data the prime candidates for investigating 
the presence of multiple breakpoints. In particular, we attempt to explore the empirical 
evidence of the instability in tail behaviour, especially during fi nancial crises, based 
on some developments in the analysis of structural change models. To that effect, we 
illustrate the applicability of the above-mentioned innovations using US stock indexes. 
In order to justify our applied procedures, we provide some experiment simulations and 
we fi nd that they indicate good fi nite sample properties. The results indicate that some 
procedures perform reasonably well and lead to an appropriate number of breaks with 
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locations coinciding with events and major fi nancial crises such as the terrorist attacks in 
2001 and the sub-prime crisis effect in 2008.

The rest of the paper is organised as follows. In section 2 we present a brief review 
on tail index estimation. The Bai-Perron (1998) approach for multiple breaks in regression 
parameters used for series of tail-indexes is discussed in Section 3. Section 4 then performs 
some simulation experiments that show if switching in the tail index is detectable. Empirical 
results are documented and discussed in Section 5. Section 6 offers concluding remarks.

2 Tail index

Let X1, X2, . . . be independent random variables with a common distribution function F 
which has a regularly varying tail

( ) ( )1 ,   ,   0F x x L x xα ∞ α−− = → >  (1)

where L is a slowly varying function satisfying ( )
( )

lim 1,  0
t

L tx
x

L x→∞
= ∀ >  and α is a shape 

parameter. This is the case if F is in the domain of attraction of an extreme value distribution 
with positive index or if F is in the domain of attraction of a stable distribution with index 
0 < α < 2. Empirical studies on the tails of daily log-returns in fi nance have indicated that 
one frequently encounters values a between 3 and 4; see for instance Longin  (1996) and 

Loretan and Phillips (1994). Various estimators for estimating 
1 γ
α

=  have been proposed 

(see Hill, 1975; Pickands, 1975; de Haan and Resnick, 1980; Hall, 1982; Mason, 1982; 
Davis and Resnick, 1984; Csorgo et al., 1985, Hall and Welsh, 1985). We concentrate on the 
best known estimator, Hill’s estimator, 

( ) ,   1 ,   
1

1 log log  
k

n n n i n n k
i

k X X
k

γ − + −
=

= −∑  (2)

where ,   1n n iX − +  are the order statistics of X1, ..., Xn. Further details are provided in Jansen and 
De Vries (1991) and the recent monograph by Embrechts et al. (1997). Hall (1982) showed 
for k/n → 0 as, n → ∞ that the statistic is asymptotically standard normally distributed. To 
determine m Goldie and Smith (1987) show that one picks m such that it is in a range that 
minimises the asymptotic Mean-Squared Error. Consequently, minimising the sample Mean 
Squared Error (MSE) is the appropriate selection criterion in large samples. A heuristic 
procedure for determining m constitutes in plotting the estimator as a function of m and 
selecting m in the region over which the estimator is more or less constant.

More statistically involved procedures have been proposed for small samples by Huisman 
et al. (1998, 2001). Their regression-based approach is based on an approximation of the 
asymptotic expected value of the Hill estimator as a linear function of k

( )( ) 1
nE k ckγ

α
≈ −  (3)

Here c is a constant depending on parameters of the distribution and the sample size. If k 
becomes small, the bias goes down and the expectation goes to the true value 1γ

α
= . The 

variance of the estimator increases with small k
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( )( ) 2

1 nV k
k

γ
α

≈  (4)

The idea of Huisman et al. (1998, 2001) is to use equation (2) in a regression analysis and 
regress the γ(k) values (computed with an ordinary Hill estimator) against k as follows:

( ) ( )0 1 ,  1, ,  n k k k kγ β β ε= + + = … κ  (5)

The estimated �0β  is an estimator of 
1γ
α

= . The authors propose to choose κ = n/2 where n 
is the sample size.1 

In this paper, we follow the method of Huisman et al. (1998, 2001), a modifi ed version of 
the Hill estimator can be used to correct for the bias in small samples.

3 Bai and Perron’s multiple structural break model

In this section, we summarise the main elements of the Bai and Perron approach2 (BP) for 
estimating and testing linear models for multiple structural changes, focusing on the ones 
that are most relevant to our analysis in Section 5.

Bai and Perron (1998, 2003) suggest several testing procedures for single and 
multiple structural breaks when the dates of breaks are unknown. In this paper, the Bai 
and Perron (BP) method is used to estimate one or multiple structural breaks. The BP 
method has some interesting features. First, BP is one of a few methods that can deal 
with multiple structural breaks. Second, BP’s method assumes that potential structural 
break points are unknown. This is important because structural break dates are not 
known in practice. 

Consider the following structural change model with m breaks (m + 1 regimes), which 
allows for the change in mean on the level of the tail-index: 

1,    1, ,  t j t j ju t T Tγ β −= + = + …  (6)

for j = 1,..., m + 1 and where we use the convention that T0 = 0 and Tm+1= n. The break dates 

(T1,..., Tm) are explicitly treated as unknown and for j = 1,..., m, we have j
j

T
  
n

λ =  with λ1<... <λm 

In this model g is the tail-index of the returns distribution at time t, βj is the k × 1 vector 
that represents the mean tail-index level in different regimes and ut is the disturbance at 
time t.

The break points (T1,..., Tm), are explicitly treated as unknown. The purpose is to estimate 
the unknown regression coeffi cients together with the break points when n observations on 
γt are available.

The goal is fi rst to estimate the unknown coeffi cients β = (β1, β2,..., βm+1). The method of 
estimation used here was based on the least-squares principle. For each m-partition (T1,..., Tm), 
the least squares estimates of βj are generated by minimising the sum of squared residuals,

( ) ( )
1

1 2

1 1

i

i

Tm

j t j
i t T

SSR β γ β
−

+

= = +

= −∑ ∑  (7)
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Given the regression coeffi cient estimates based on a given m-partition (T1,,..., Tm), which are 
denoted by � 1( , , )j mT Tβ … , where, where βj = (β1, β2,..., βm+1). Substituting these into equation 
(7) the estimated breakpoints are given by

� �( ) ( )
1

1 1
, , 

, ,  arg min , ,  
m

m m
T T

T T SSR T T
…

… = …  (8)

where the minimisation is taken over all partitions (T1,..., Tm) such that i i 1T  T [ n] .−− ≥ ε
The break point estimators are thus global minimisers of the objective function. Finally, the 
estimated regression parameters are the associated least-squares estimates at the estimated 
m-partition �{ }jT , �{ }( )ˆ ˆ .jTβ β=

A central result derived by Bai and Perron (1998) is that the break fraction 
�

j
j

 T   
n

λ̂ =  
converges to its true value at the fast rate n, making the estimated break fraction super-
consistent. Therefore we can estimate the rest of the parameters, which converge to their true 
values at rate n 1/2, taking the break dates as known.

3.1 Test statistics for multiple breaks
The determination of the existence of structural change and the selection of the number of 
breaks depends on the values of various tests statistics when the break dates are estimated. 
Bai and Perron discuss three types of tests: a test of no break versus a fi xed number of 
breaks, a double maximum test and a sequential test. 

First, they consider a supF type test of no structural break (m = 0) versus m = k breaks. 
The test is ( ) ( )n n 1 k

ˆsupF k F , , ;qˆ= λ … λ , where 1 k
ˆ,ˆ ,λ … λ  minimise the global sum of 

squared residuals (according to (8)). Next, the null hypothesis of no structural break against 
an unknown number of breaks given some upper bound is tested by double maximum tests. 
Bai and Perron consider two statistics, what they called the ‘double maximum’ statistics. The 
fi rst double maximum statistic is given by

( )n1
max ,max m M

UD supF m
≤ ≤

=  (9)

where m is an upper bound on the number of possible breaks. The second double 
maximum statistic applies different weights to the individual tests such that the marginal 
p-values are equal across values of m and is denoted WDmax (see Bai and Perron 1998, 
for details).

Finally, they proposed a statistic, labeled supFn(1+1\1) for testing the null hypothesis of l 
breaks against the alternative hypothesis of l+1 breaks. This statistic is used to test whether 
the additional break leads to a signifi cant reduction in the sum of squared residuals. 

BP derive asymptotic distributions for the double maximum and supFn(1+1\1) statistics 
and provide critical values for various values of the trimming parameter (ε) and the maximum 
numbers of breaks (M).

Compared to other structural break tests, the BP method allows for general specifi cations 
when computing test statistics and confi dence intervals for the break dates and regression 
coeffi cients. These specifi cations include autocorrelation and heteroskedasticity in the 
regression model residuals, as well as different moment matrices for the regressors in the 
different regimes.
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3.2 Criteria for fi nding the number of breaks
Bai and Perron (1998, 2003) propose three methods to determine the number of breaks: the 
Bayesian Information Criterion, BIC (Yao, 1988), the Schwarz modifi ed criterion, LWZ 
(Lui et al., 1997) and a sequential approach. In this paper, we advocate for the last method 
proposed by Bai and Perron.

The relevant procedure for estimating the number of breaks as suggested by Bai and 
Perron is based on the sequential application of the sup test using the sequential estimates of 
the breaks. First, examine the double maximum statistics to determine whether any structural 
breaks are present. If the double maximum statistics are signifi cant, examine the sup Fn(1+1\1) 
statistics to decide on the number of breaks, choosing the sup Fn(1+1\1) statistic that rejects 
the largest value of l. Finally, the trimming parameter of at least 0.10 (M = 8) is recommended 
when allowing for heteroskedasticity and series correlation in the time series. 

4 Simulation experiments

In this section, we investigate via simulations the performance of the above-mentioned tests 
considering various data-generating processes. We focus upon the sup F test’s accuracy in 
determining single breakpoints in the presence of single or two breaks. The data generating 
processes follow a Generalized Pareto Distribution (GPD) with different tail index values. 
In Figure 1, we plot the densities of GPD for γ = 0.8 and γ = 0.1.

4.1 Data generating processes
We consider the following three data generating processes. The fi rst process generates 
samples with a size of n = 1500. For the two remaining DGPs, the simulation involved 
generating samples with a size of n = 2250. For each process 1000 samples were drawn.

( ) ( ) ( ) ( )1 1 750 751 1500:      0.2,  0,1  0.6,  0,1  ;t tDGP GPD GPD= … = …  (10)

( ) ( ) ( ) ( ) ( ) ( )2 1 750 751 1500 1501 2250:      0.1,  0,1  0.4,  0,1  0.8,  0,1  ;t t tDGP GPD GPD GPD= … = … = …  (11)

( ) ( ) ( ) ( ) ( ) ( )3 1 750 751 1500 1501 2250:      0.2,  0,1  0.6,  0,1  0.1,  0,1  ;t t tDGP GPD GPD GPD= … = … = …  (12)

The fi rst process DGP1 generates a series which follows a Generalised Pareto Distribution 
(GPD) in the 1rst half of the sample with γ = 0.2 and GPD distributed in the 2nd sample half 
with γ = 0.6. Both subsamples have equal length for sake of simplicity. The single break 
corresponds with a switch from thin tails with all moments in existence (α = 1/0.2 = 5) to fat 
tails with tail index (α = 1/0.6 = 1.66). The fi rst process DGP1generates an increasing tail-
index series with one structural breaks T1 (i.e., at time t = 751).

The second process generates series with a two breaks in g. The process implies an 
increase ing followed by an increase (g = 0.1 in the fi rst third of the sample, 0.4 in the second 
third and fi nally λ = 0.8). The DGP2 generates an increasing followed by an increasing tail-
index series with two structural T1 (i.e., at time t = 751) and T2 (i.e., at time t = 1501).

Finally, the third process generates also series with a two breaks in γ. The process implies 
an increase in γ followed by a decrease (γ = 0.2 in the fi rst third of the sample, γ = 0.6 in 
the second third and fi nally γ = 0.1). In contrast to DGP2, the DGP3 generates an increasing 
followed by a decreasing tail-index series with twostructural T1 (i.e., at time t = 751) and T2 
(i.e., at time t = 1501). As for DGP1 and DGP2 all subsamples have equal length.
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Figure 1 Generalised pareto densities, for pareto (γ = 0.8) and pareto (γ = 0.1)

The simulation investigation is organised as follows. This study begins by simulating the 
empirical Kernel distributions of the estimated break points to each proposed DGPs and 
fi nally studies the empirical power of the sup F type test statistic.

4.2 Estimating the break date 
The simulation were conducted for a known break points location on τ* = 751/1500 = 0.5 
(for DGP1) and *

1τ =0.333 and *
2 0.666τ =  (for DGP2 and DGP3). Table 1 reports the results 

of simulation experiments on the break point estimators 1ˆDGPτ , (i)
DGP 2ˆ  τ and (i)

DGP 3τ̂  for I = 1,2. 
These values are compared to the true breakpoint *τ and *

iτ  for i = 1,2 and are expressed 
as fraction of the sample size. The values in Table 1 are the mean values of the break point 
estimates. Below these values, in brackets, the corresponding empirical standard deviations 
are reported.

Table 1 Estimated break dates

Single break point: DGP1

 1ˆDGPτ
*τ = 0.50 0.6117367

(0.0727564)
Two break points: DGP2 and DGP3

( )
 2ˆ i

DGPτ ( )
 3ˆ i

DGPτ
*
1τ = 0.333 ( )1   

DGP 2τ̂ 0.4588822 
(0.1027592)

( )1   
DGP 3τ̂ 0.3759764 

(0.03233747)
*
2 0.666τ = ( )2   

DGP 2τ̂ 0.7498996 
(0.05245349)

( )2   
DGP 3τ̂ 0.5557582 

(0.09967157)

Notes: The table reports mean values and standard deviations (in parentheses) of the break point es-
timators DGP 1τ̂ , (i)

DGP 2ˆ  τ and (i)
DGP 3τ̂  for i = 1,2. These values as well as the true breakpoints τ*, *

1τ  
and *

2 τ  are expressed as fraction of the sample size. Data is generated according to equations (10), 
(11) and (12).
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From Table 1, we observe that the mean values of the estimates are not almost far off the 
true break point and the standard deviations are fairly low. When the DGP has a single 
point, DGP 1τ̂  turns out to be a reliable estimator. While, it tends to estimate the break 
point relatively late, the mean estimated break fraction is relatively closest to the true 
value and the standard deviation is relatively low. The proposed model with the sup F 
type test statistics thus can accurately estimate the break point for DGP1. Similar, when 
the DGP has two break points, we note that in most of the case there is a tendency to 
estimate the break points too late. The only exception was found for (2)

DGP 3τ̂  which is 
relatively early.

The relatively late in estimating the break points date may be justifi ed by the fact that the 
procedure takes some time for learning process before becoming effective in detecting break 
points. By comparing different DGPs, we note that the procedure tend to lately estimate the 
true breakpoint when we have an increasing tail index estimate and the opposite when we 
have a decreasing tail index estimate.

Similar results may be found by graphical representation of the derived Kernel densities 
based upon 1000 replications.

The relevant simulated Kernel densities are contained in Figures 2–4. Moreover, the 
frequency of the estimated break points are plotted against the relative location of the 
estimated break points in the sample (i.e., Tj/n, j = 1, 2). In Figure 2, the single break date for 
DGP1 is accurately estimated by the supF test although slightly later than the true break (the 
peak in the frequency is around the 0.56 mode). The densities of the estimated break dates in 
Figure 3 suggest a fi rst break at the 0.36 mode which indeed correctly signals the fi rst break 
in DGP2 and a second break around 0.74 % mode. Both of them are relatively later than 
the true break points. In Figure 4, we observe that the fi rst break point of DGP3 is correctly 
detected around the 0.35 mode, while it signals early the second break point (the peak in the 
frequency is around 0.50 mode). 

Figure 2 Simulated Kernel density of the break points for DGP1 (see online version for colours)
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Figure 3 Simulated Kernel densities of the break points for DGP2 (see online version for colours)

Figure 4 Simulated Kernel densities of the second break point for DGP3 (see online version for 
colours)

According to Table 1 and these fi gures, the proposed model with the sup F type test statistics 
thus can accurately estimate the break points for DGP1, DGP2 and DGP3, implying that it 
effectively identifi es multiple structural changes for both increasing and decreasing true tail-
index series, while it’s in most of cases lately detected.

4.3 Power properties of sup F tests
We examine the extent to which the procedures fi nd the right number of breaks when 
there are in fact some breaks. A measure of the test power is the probability of fi nding 
one or two breaks. We investigate the power of sup F tests to locate the breakpoint. 
To calculate the empirical power of the sup F test, we generate data according to (10), 
(11) and (12), 1000 replications are performed from each DGP. The power of the test is 
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evaluated at a nominal size of 5%, i.e., a test rejects the null hypothesis. The results are 
reported in Table 2.

Table 2 Relative rejection frequencies of F-statistics

Sup F

DGP1 1.00
DGP2 1.00
DGP3 1.00

Note: sup F denotes the statistic sup Fn (k) for k = 1,2

Table 2 shows very good power properties of sup F tests; for both k = 1 and 2. The sup F test 
rejects the null hypothesis in 100% of the cases.

5 Empirical results

5.1 Data description
Our dataset consists of closing daily stock market indexes of USA and France. The data 
covers the period 01/02/1990 through 02/04/2012 for a total of 5592 usable observations 
for each index. This data set presents interesting cases for studying tail behaviour given 
the number and size of the macroeconomic shocks and fi nancial crisis that occurred 
during this period, such as, the Tequila crisis in Mexico in 1994/1995, the Asian crisis 
in 1997/1998, the Russian default in 1998, the events of September 11, 2001, the Iraq 
war in 2003,the subprime mortgage crisis during 2008–2009 and the EU debt crisis 
triggered on 2010. Moreover, the retained period span is marked by large price increases 
and decreases that refl ect a substantial rise in the volatility of main international stock 
market indexes.

Our objective is to implement tests of tail index constancy and, if possible, to relate the 
detected breakpoints to known changes in fi nancial and economic area. The major crises 
shifts during the data period make them the obvious candidate for testing the multiple 
structural breaks in tail behaviour.

Daily returns are generated by taking fi rst differences of the logarithm of each variable:

,  
,  

,  1

100*ln i t
i t

i t

x
r

x −

 
=    

,

where xi,t s the daily closing value of the stock market index i on day t. Figure 5 plots 
of the daily returns of both series and reveals that the largest positive and negative price 
movements occur around major fi nancial crises. Both series were extremely volatile, which 
led to a succession of extremely large positive and negative returns within a very short time 
span. These graphics show that returns are stationary and suggestan ARCH scheme for the 
daily returns where large changes are followed by large changes and small changes are 
followed by small changes. Clearly, the degree of extreme return fl uctuation varies before 
and after those major crises. One reason might be that the tail thickness of the underlying 
return distribution has changed over time.
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Figure 5 Time series plot for CAC 40 and SP500 log returns series (see online version for colours)

Table 3 provides data sample statistics. The mean return for the entire period is nearly zero. 
The SP500 exhibits the highest standard deviation. The unconditional distributions of the 
returns have a fat tail or are leptokurtic, as evidenced by high kurtosis, highly signifi cant 
Jarque-Bera statistics. Additionally, the distributions have a slight negative skew, indicating 
a small asymmetry. These fi ndings suggest that the distributions of daily returns can be 
characterized by a heavy tail or have a Fréchet tail distribution and the left and right tails 
should be treated separately.

Table 3 Descriptive statistics of daily returns

SP500 CAC40

Observations 5992 5992
Mean 0.02447 0.01139
Std 1.181 1.436
Kurtosis 11.46 7.539
Skewness –0.2323 –0.02893
Min (%) –9.47 –9.472
Max (%) 10.96 10.59
Jarque-Bera
(p-value)

16762.2 
(0.00)

4800.996
(0.00)

5.2 Tail-index estimates: a recursive approach
As we have noted, a simple graphical inspection of time series plot of returns shows that the 
degree of extreme returns fl uctuation varies before and after major crises. One reason might 
be that the tail thickness of the underlying return distribution has changed over time. This 
fi nding let us motivated to assess the instability of the tail index.

To do that, we start our empirical analysis by calculating the recursive modifi ed Hill3 
index of returns at time t, for both series, using of EVT techniques and then employs the 
structural changes model to estimate the unknown break date in a time series of tail-indexes 
and mean tail-index levels in different regimes.
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By adopting a recursive approach, we start with a window size of 500 observations and 
increases the sample size by a single observation. Particularly, extreme price movements 
may differ between long and short positions. Consequently, one focuses in the fi rst case 
on the left tail of the distribution of returns and on the right tail of the distribution in the 
second case. The resulting process of the evolution of the tail-index from March 1992 to 
July 2010, for SP500, is shown in Figure 6. This fi gure indicates that the modifi ed Hill 
index4 estimates (left and right) of the SP500 (CAC 40) returns distribution have mainly 
fl uctuated in the range of about0.1512874 – 0.3037154 (0.186-0.275). These fi ndings show 
that the distributions of daily returns can be characterized by a heavy tail or have a Frechet 
tail distribution. Even though tail-index differences between left and right tails do exist, the 
tail-indexes tend to move closely together.

Figure 6 The dynamic modifi ed Hill index estimates for left and right tails of the SP500 returns 
distribution (see online version for colours)

It is clear from Figure 6 that both left and right indexes for SP500 exhibit a change in 
the degree of extreme movements over time. One source of such variation in tail activity 
in a series is that the tail thickness of the underlying returns distribution. Moreover, tail 
indexes for both series stay relatively stable around 0.18, until the mid 1990, followed 
by an upward trend indicating an increase in extreme movement in the markets during 
the periods, which are roughly about the time when many fi nancial crises occurred such 
as crises in so-called emerging markets, the Tequila crisis in Mexico in 1994/1995, the 
Asian crisis in 1997/1998, the LTCM crisis of 1998, the Russian default in 1998, events of 
September 11, 2000, Irak war 2003. The tails seem to be particularly fat by the end of 2008 
and later. This is not surprising, given that in that period, the market saw some of the worst 
turbulence in the international fi nancial markets in living memory, the subprimes crisis 
during 2008. Moreover, the relatively high in the tail index during 2010 and later may be 
due the EU debt crisis.

Graphical investigation of the fi gure above show that the tail index is time varying 
or in others words the probability of extreme returns are not constant over time. This 
fi nding is a fi rst sign of existing of multiple structural changes, namely, the probability of 
extreme events varies among different regimes, which we shall explore in the following 
subsection.
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5.3  Testing for Multiple Structural Changes using the Bai and Perron (2003) 
approach (BP)

In this section, we use the method of Bai and Perron (2003) to test the presence of structural 
changes in the mean of the series of both tail indexes over the past 20 years. To that effect we 
apply our procedure with only a constant as regressor (i.e., {zt = 1}) (inclusion of the lagged 
dependent variable does not lead to different results and was not found to have signifi cant 
infl uence in the segmented model) and account for potential serial correlation via non-
parametric adjustments (see the discussion in Section 4). We allowed up to 8 breaks and used 
a trimming ε = 0.10, hence each segment has at least 550 observations. This method requires 
no prior information regarding the number and timing of potential breaks and allows for 
serial correlation and heteroskedasticity in the errors across structural regimes.

BP considers several testing procedures aimed at identifying the number of structural 
breaks (m) in equation (1). In this section, we use two statistics developed by BP, what they 
called the ‘double maximum’ statistics, for testing the null hypothesis of no structural breaks 
against the alternative hypothesis of an unknown number of breaks given an upper bound 
M< (M = 8). The fi rst double maximum statistic is given by UDmax and the second double 
maximum statistic applies different weights to the individual tests such that the marginal 
p-values are equal across values of M and is denoted WDmax (see Bai and Perron, 1998).

First, look at the sequential method. If 0 against 1 break is rejected, continue with the 
sequential method until the fi rst failure to reject. If 0 against 1 is not rejected then test the 
hypothesis of no break versus a fi xed number of breaks. If any sup F(k) (for = 0 versus = 1,…, 
k breaks, where k is the maximum number of breaks considered) is signifi cant, then the 
number of breaks can be decided upon a sequential examination of the for = 1, …, k breaks. 
The number of breaks are decided by examining the SupF(l + 1|l) statistics, choosing the 
SupF(l + 1|l) statistic that rejects for the largest value of l. Finally, the trimming parameter 
of at least 0.10 (M = 8) is recommended when allowing for heteroskedasticity and series 
correlation in the time series. The results are presented in Table 4. 

The fi rst issue to be considered is the determination of the number of breaks. Here one key 
observation is that for each tail series, both double maximum values (UDmax and WDmax) 
support rejecting the null hypothesis of no structural breaks. All UD max and WD max 
statistics are signifi cant at the 1% level. Additionally, the Sup Fn (k) tests are all signifi cant 
for k between 1 and 8 for both series. So at least one break is present.

For the tail estimate of SP500, the sequential procedure (using a 5% signifi cance level) 
selects 5 breaks for both the tailswhile the BIC and the modifi ed Schwarz criterion of Liu et al. 
(1997) retain 6 breaks for both tails. In contrast, for the CAC40, we decide to retain respectively 
7 and 3 for left and right estimates, as an optimal for the sequential procedure while the BIC 
and the LWZ lead respectively to 7 and 8. Given the documented facts that the information 
criteria are biased downward and that the sequential procedure performs better in this case, 
we conclude in favour of the presence of fi ve and six respectively for left and right concerning 
SP500 estimatesand seven and three respectively for left and right estimates of CAC40 series.

Based on the optimal number of breaks found, Table 5 reports the estimates of break dates 
and different mean tail-index levels obtained under global minimisation. 

Our results are relevant for at least two reasons. Firstly, we observe that the break dates 
are generally accurately estimated since the 95% confi dence intervals cover a few days 
before and after. In addition, these results are signifi cant as they fi t great facts and fi nancial 
and economic events. This is what is showed below:
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For the SP500 return distribution, the fi ve estimated break dates for the left tail are October18, 
1995, October 24, 1997, March 19, 2002, March 21, 2005 and September 10, 2008, their 95% 
confi dence intervals are (15/07/1995–30/05/1996), (08/08/1997–04/11/1997), (17/01/2002 
–30/09/2002), (03/06/2003–14/03/2007) and (01/09/2008–23/09/2008), respectively (see 
Figure 7). Their estimates of the mean tail-index levels in the six regimes are 0.178088, 
0.186101, 0.230882, 0.202843, 0.211730 and 0.276542, respectively, values which are 
signifi cantly different from 0 at the 1% level. Note that the differences in the estimated means 
over each segment are signifi cant and point to an increase of 4,50% in October 18, 1995, 
another increase of 24,06% October 24, 1997, a decrease of 12,14% in March 19, 2002, an 
increase of 4,38% in March 21, 2005 and a large increase of 30,61% in September 10, 2008. 
These variations of the estimated autoregressive coeffi cient across segments indicate that the 
effects of some international economic and fi nancial events. Additionally, our results show 

Table 4 Bai and Perron Tests of Multiple Structural Breaks in the tails of SP500 and CAC40 
returns distribution

SP500 CAC40

Test statistics Left tail Right tail Left tail Right tail

Double maximum tests
UDmaxa 291.0052* 983.0570* 52.7451* 230.1117*
WDmaxb 579.1146* 1671.1352* 105.9589* 347.4370*
Sup F test

Sup Fn(1) 14.5103* 47.3831* 8.1817* 21.8583*
Sup Fn(2) 38.6034* 99.1532* 37.4031* 36.3282*
Sup Fn(3) 240.4568* 164.5954* 30.804* 213.6782*
Sup Fn(4) 291.0052* 691.1288* 37.0006* 230.1117*
Sup Fn(5) 268.1874* 983.0570* 41.6388* 183.2935*
Sup Fn(6) 228.1762* 841.9189* 52.7451* 180.4582*
Sup Fn(7) 193.0236* 728.1458* 47.5693* 155.9357*
Sup Fn(8) 227.8275* 657.4356* 41.6849* 136.6840*

Sup F(l + 1|l) tests
Sup Fn(2|1) 21.1740* 509.8983* 37.4048* 1640.9524*
Sup Fn(3|2) 44.3084* 67.9447* 4.4458 40.2483*
Sup Fn(4|3) 1047.9490* 536.0893* 9.6759 5.5014
Sup Fn(5|4) 14.0161* 536.0893* 10.3891 5.9963
Sup Fn(6|5) 0.5873 3.2417 28.6790* 5.9963
Sup Fn(7|6) 0.0000 0.0537 19.9472* 5.9963
Sup Fn(8|7) 0.0000 0.0000 0.0768 0.0000
Sequential 5.0000 5.0000 7.0000 3.0000
LWZ 6.0000 6.0000 7.0000 8.0000
BIC 6.0000 6.0000 7.0000 7.0000

Note: The upper bound M is set to be 8 and the trimming percentage is chosen to be 10% in the 
empirical study. The number of breaks chosen is according to the test statistics Sup F(l + 1|l), l = 1, 2, 
3, 4,5,6,7.

The double maximum statistics (UDmax and WDmax) are highly signifi cant, indicating that there 
is at least one structural break in the time series. The number of breaks are decided by examining the 
Sup Fn(l +1| l) statistics, choosing the, Sup Fn(l +1| l) statistic that rejects for the largest value of l.
*Signifi cant at the 1% level.
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that there are confi dence intervals which are large, indicating that the estimates are imprecise 
and so no evidence in support of structural changes occurring on October 18, 1995 and on 
March 21, 2005. 

Figure 7 The time series plot of the left tail-index of the SP500 returns distribution with estimated 
fi ve break dates and six mean tail-index levels in different regimes (see online version for 
colours)

Table 5 Estimation results of the structural change model in the tails of SP500 returns 
distribution

SP500

Left tail Right tail

1st regime δ1

First break date
0.178088*

18/10/1995(15/07/1994–
30/04/1996)

0.159380*
01/02/1994 

(15/10/1993–14/03/1994)
2nd regime δ2

Second break date
0.186101*
24/10/1997

(08/08/1997 – 04/11/1997)

0.180714*
04/09/1998 

(04/08/1998–30/10/1998)
3rd regime δ3

Third break date
0.230882*
19/03/2002

(17/01/2002 - 30/09/2002)

0.209819*
04/12/2000 

(12/10/2000–07/03/2001)
4th regime δ4

Fourth break date
0.202843*
21/03/2005

(03/06/2003–14/03/2007)

0.228069*
19/12/2002 

(09/09/2002–22/03/2004)
5th regime δ5

Fifth break date
0.211730*
10/09/2008

(01/09/2008–23/09/2008)

0.237148*
10/09/2008 

(05/09/2008–28/09/2008)
6th regime δ6 0.276542* 0.291176*
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Our empirical study shows an increase in extreme negative price movements for SP500 
returns the third (after mid 1990s – beginning 2002) and the six regimes (since the last 
quarter 2008) compared with the others regimes, with an increasing and decreasing in the 
level of the estimates of tail index. 

These empirical fi ndings show that high levels in the estimated mean tail-index, generally 
coincide with periods of particular fi nancial turbulence in the US and international markets. 
In fact, equity price volatility has trended up since the mid-1990s as it is affected by some 
catastrophic fi nancial crises in so-called emerging markets, the Tequila crisis in Mexico in 
1994/1995, the Asian crisis in 1997/1998, the Russian default in 1998, the crisis in Brazil 
the same year, the slide into crisis and eventual devaluation and default in Argentina in 2001. 
Equity volatility has been particularly high since 2000. The stock market began to fall from 
spring 2000 and then, more defi nitively, from late summer 2000, when a seemingly endless 
run of dismal corporate profi t reports dramatically defl ated equity prices. A huge multitude 
of e-commerce fi rms that had never shown a profi t collapsed fi rst, as they simply ran out 
of funds. But, soon the crash consumed almost all of the leading lights of the TMT sector 
(technology, media and telecommunications), during the dot.com bubble, followed by shocks 
such as the events of September 11, 2001, the Enron and WorldCom accounting scandals 
and geopolitical uncertainty, all of which conspired to keep equity markets falling. In late 
2002, the Fed lowered interest rates and the economy slowly recovered during 2003, thus 
decreasing the extreme negative price movements. The last analysis of market conditions 
provides further evidence of a structural change in left tail behaviour occurring onMarch 19, 
2002 for SP500 returns.

Note that the highest level in the mean tail-index estimate matches with the recent sub-
prime crisis. By the end of 2008, the diffi culties associated with the subprime mortgage 
lending began to spread to the broader fi nancial sector, resulting in a second bear market 
of the 21 st century. The crisis escalated in September, 2008 entered a period of unusual 
volatility. A very violent fall intervened in October, 2008, just when this planetary cycle 
began its fi rst true offensive. The prices were violently fi red downward, sometimes by 
falling to the half of their value. In this year, the current loss of the largest since 1931 
was reached, when the broader market declined more than 50%. The market continued to 
decline from late 2008 and early 2009 surrounding the events related to the fi nancial crisis 
in 2008. The concomitant slowdown in the fi nance industry and the real estate market may 
have been a contributing cause of the 2008–2009 economic recessions. Additionally, EU 
debt crisis triggered on 2010 may explain the relative increasing level of risk observed in 
recent last years.

The prevailing uncertainty has been stoked by mounting geopolitical tension, increased 
caution regarding the fi nancial information disclosed by companies and heightened risk 
aversion on the part of investors; it led to a signifi cant and protracted drop in prices as well 
as a sharp increase in volatility on stock and credit markets. All of these events and the 
associated uncertainties leading up to keep the equity markets falling.

For the right tail-index of SP500, we also retain 5 break dates. The break dates are February 
1, 1994, September 4, 1998, December 4, 2000, December 19, 2002 and September 10, 2008 
(see Figure 8), their 95% confi dence intervals are (15/10/1993–14/07/1994), (04/08/1998–
30/10/1998), (12/10/2000–07/03/2001), (09/09/2002–22/03/2003) and (10/09/2008–
28/09/2008), respectively. Their estimates of the mean tail-index levels in the six regimes are 
 0.159380, 0.180714, 0.209819, 0.228069, 0.237148 and 0.291176 respectively. The differences 
in the estimated means over each segment are signifi cant and point to an increase of 13,39% 
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in February 1, 1994, another increase of 16,11%in September 4, 1998, an increase of 8,70%in 
April 4, 2000, an increase of 3,98 % in December 19, 2002 and a large increase of 22,78 % in 
September 10, 2008.The results can also be visualised as in Figure 7. In contract, the right tail 
index shows an increase of probability of extreme positive price movement across the seven 
regimes. Note that there is confi dence interval which is large, indicating that the estimate is 
imprecise and so no evidence in support of structural changes occurring on February 1, 1994.

In contrast to negative extremes returns, the right tail index shows an increasing probability 
of extreme positive price movement across the six regimes. Note that the highest estimate 
of the mean tail-index was on the last regime which matches with the sub-prime crisis of 
2008. The empirical evidence indicates that the structural changes in the tail behaviour of 
the distribution of SP500 returns are associated more with negative shocks than positive 
ones, creating differences in risk management between long and short investors in markets. 
Additionally, these break dates almost all occur at the end of the year. 

Note that for the CAC index and in order to keep the paper short, we present only a 
summary of the results, tables and graphs are not reported and are available upon request 
from the authors. The eight estimates of the mean tail-index levels corresponding to the 
negative tail are 0.246859, 0.221706, 0.229807, 0.212650, 0.224851, 0.226936 and 
0.246909, respectively, values which are signifi cantly different from 0 at the 1% level. The 
differences in the estimated means over each segment are point to a decrease 10,19% % in 
June 23, 19945 (22/06/1994–27/06/1994), an increase of 3,7% in July 27, 1998 (15/07/1998–
03/08/1998), a decrease of 7,5 % in July 28, 2000 (27/07/2000–01/08/2000),an increase of 
5,7% in July 31, 2002 (30/07/2002–02/08/2002), a slight increase of 0,9% in September 9, 
2004 (09/09/2004–06/10/2004) and an important increase of 8,8% in September 16/09/2008 
(08/09/2008–10/10/2008). Break dates are generally linked to major events in the market. 
For CAC 40, break dates on September 1998, July and September 2002 and October 2008 

Figure 8 The time series plot of the right tail-index of the SP500 returns distribution with estimated 
fi ve break dates and six mean tail-index levels in different regimes (see online version for 
colours)
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are easily justifi ed. The period of trouble is identifi ed at the end of 1998 and the beginning 
of 1999. This may be linked with the implementation of the European single currency and 
the risk born on the market through this event. Another period of trouble occurs in 2000. 
This seems to be a consequence of the IT 2000 bubble burst. Fourthly, period of trouble 
and the longer one, is witnessed between the end of July 2002 and April 2003. It may 
be a consequence of the Iraqi War II and the threats about it. The US subprime housing 
market started its downward trend at the end of 2007 and Lehman Brothers declaration for 
bankruptcy the 15 of September 2008, caused a dramatic effect on the US stock markets 
that rapidly spread to rest of the world, especially on French stock market. Additionally, we 
can note that other domestic or macroeconomic factors may explain the existence of other 
switching regime on French stock market.

Compared to the SP500, the estimates of mean tail-index levels seem more stable and are 
maintained in the range 0.21–0.24. The highest levels are observed on in June 23, 1994 andin 
16/09/2008. Note that the left tail index break dates for SP 500 and CAC are dissimilar (dates 
and years) except for Sep. 10, 2008 for SP 500 and Sep. 16, 2008 for CAC which are close 
enough. Such disparity in break dates for the two indices may tentatively be interpreted by 
the existing of some country-specifi c effects, such as macroeconomic factors that may partly 
drive stock market movements. However, when there is a strong crisis such as the subprime 
crisis of 2007–2008 both of them are more effi cient in integrating the news, exhibiting a more 
resilient stout behaviour and the switching is being more obvious and occur in almost the 
same time.

The estimated break dates for the right tail are in Mars 15, 1994, October 10, 1998 and 
September 16, 2008. Their estimates of the mean tail-index levels in the six regimes are 
0.229913, 0.197534, 0.237069 and 0.268043. The differences in the estimated means over 
each segment are point to a decrease of 14,08% in Mars 15, 1994 (17/02/1994–07/11/1994), 
an increase of 20,01% in October 10, 1998 (12/08/1997–03/01/1998) and an increase of 
13,07 % in September 18, 2008 (08/09/2008–10/10/2008). The highest levels are observed 
on in Mars 15, 1994 and in September 16, 2008.

Note that the highest level is relevant to period of subprime crisis of 2008. In fact, the 
deterioration in the economic and fi nancial environment has seen the stock market index 
at new lows. In such a climate of extreme anxiety, the stock market indices reached levels 
close to our worst-case scenario. Investors are well aware of the country’s weaknesses and 
of the poor state of the French economy, something it has in common with many countries. 
Our results show that French stock market moves broadly in line with USA especially in 
very strong crisis such as the last subprime crisis. In such violent crisis where volatility was 
extraordinarily high, this co-movement is very obvious and therefore the switching in the tail 
behaviour of stock indexes can be easily observed and nearly on the same period.

In sum, the recent fi nancial crisis has triggered large adverse effects on stock markets 
around the world, especially in American and European countries. However, the degree of 
extreme risk seems not uniform. The US market has higher risk. However, for both market, 
the most signifi cant jumps are clearly observed in September 2008. 

Conclusion

This study is motivated by our aim to further explore the empirical evidence in the tail 
behaviour returns of stock market indices, based on some developments in the analysis of 
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structural change models, in turbulent periods. To do that, we have used some innovations 
related to structural change that can simultaneously determine the number of structural 
breaks in a series of tail-indexes and estimate the mean tail-index levels in different regimes. 
Here we have used a commonly accepted and practiced estimator for the tail index, Hill 
estimator. 

Based on some simulation exercises, we examine the small-sample performance of the 
procedure suggested by Bai and Perron for determining the true location of multiple breaks, 
based on the sequential Sup F test and we provide some results on the power of the test, that 
indicate good fi nite sample properties of our procedure. The proposed method is then applied 
to the tail behaviour returns of two international stock market indices, S&P500 (USA) and 
CAC40 (France), covering the period October 1990 to July 2010. This data set is challenging 
to model given the number and size various recent fi nancial crises, during this period. Our 
results confi rm the instability in the tail behaviour of return distributions and indicate that 
applied procedures perform reasonably well and lead to an appropriate number of breaks 
with locations coinciding with major fi nancial crisis and events such as the LTCM crisis, 
September 11, 2001 terrorist attack on the US, the sub-prime crisis by the end of 2008 and 
the EU debt crisis triggered on 2010. 

The instability of the tail index has important implications for the design of trading 
and risk management models. In fact, if the amount of probability mass in the tails of the 
unconditional distribution is shifting through time, the full sample estimates of tail index and 
corresponding quantiles, like Value at Risk, might wrongly estimated.

Our paper is a contribution in exploring and modeling time variation of tail behaviour, 
based on some developments in the analysis of structural change models. However, 
the results we have presented show the need for more investigation and therefore can 
be extended in several ways. We studied the tail behaviour of stock indexes and we 
found that can vary signifi cantly across regimes. In future research, one could study 
the implications of the instability in tail behaviour on the Value-at Risk or others risk 
measures. Such extension is likely to deepen our understanding of the effects of multiple 
regimes on risk management strategies or on asset allocation. Finally, one could extend 
our framework to jointly modeling regimes in tails behaviour of a set of stock market 
indices as they are well-known closely linked and generally move together, especially 
in turbulent periods.
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Notes
1The authors show that the results are robust with respect to the choice of κ.
2 Among the existing literature on the subject, see Chow (1960), Quandt (1960), Andrews (1993) and 
Andrews and Ploberger (1994). More recently, we fi nd the work Bai and Perron (1998, 2003).

3 The modifi ed Hill index is calculated following the method proposed by Huisman et al. (2001) and 
Quintos et al. (2001).

4Note that a high value of γ̂  implies thicker tails.
5The dates in parentheses are the confi dence intervals corresponding to the break dates.
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